

Cannabis Drying Maximise Income through Reduction of

Terpene & Cannabinoid Loss

Tobias Schappeler Managing Director

CANNABIS DRYING? CANNABIS CURING? BOTH? HOW?

There is very limited science available. The industry does not always have standardized terminology.

For the purpose of my presentation lets define:

Drying = Removal of Water (to target moisture, not zero - tangible) Curing = Storage to allow flower to balance / mature (equilibrate - non-tangible)

I'm a nuts-and-bolts guy, not a cannabis expert. I will focus on technology and commercials.

PAIN POINTS

- Dying Time
- Poor Residual Moisture Control
- Microbacterial Contamination
- Product Oxydisation / Degradation
- 🥥 Labour Demand
- Footprint / Facility Cost

UPSIDES

- Traditional?
- Best Product?
- Low Entry Cost

Potential Solutions - Technology

	Air Drying	Freeze Drying	REV Drying
Drying Time	6 - 12 days	24 - 72 hours	45 min - 2.5 hours
Lowest Residual Moisture	> 5%	< 0.1%	< 2%
Residual Moisture Control	-	-	++
Micro Growth Risk	-	++	++
Micro Remediation	-		++
Oxidation	-	++	+
Cannabinoid Content	-	++	++
Terpene Content	-	+	++
Natural Drying Shrink	++	-	+
Terpene Recovery	-	++	++
Minimum Investment (20t annually,			
GMP)	300K	>1M	800K
Energy Consumption	-		+
Service Cost	++		+
Labour Cost		+	+

Potential Solutions - Technology

Freeze (Vacuum) Drying

Radiant Energy (Vacuum) Drying

Frozen	Product State	Fresh or Frozen
< - 20C	Product Temperature	30 - 60C
< 0.01 mbar	Vacuum	30 mbar
< - 50C	Condenser Temperature	10C

REV™ TECHNOLOGY

THE MICROWAVE ADVANTAGE

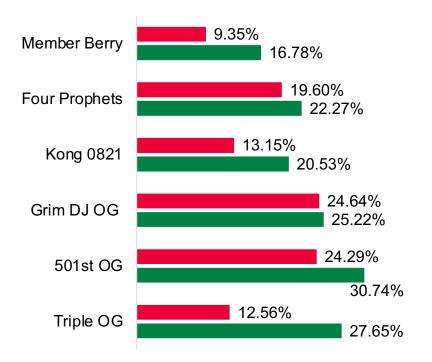
- Very fast
- Volumetric heating unmatched uniformity
- Precise temperature and process control
- Efficient energy transfer at 85-90%
- Reduced energy requirements

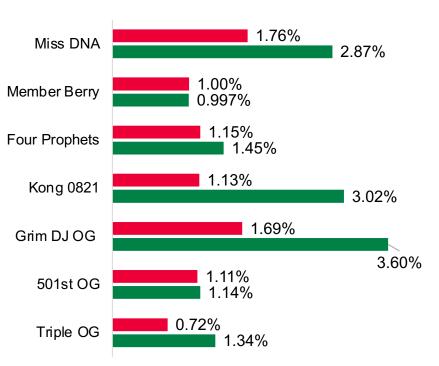
REVENUE – SPEED TO MARKET Cut 6-12 day drying to <2 hours.

PROFIT – CANNABINOID & TERPENE RETENTION Retain 20% more terpenes and 25% more cannabinoids (CBD, THC).

COST – REDUCED FOOTPRINT Up to 80% less space than comparable drying room capacity.

COST – REDUCED LABOUR Typical <50% compared to hang drying.

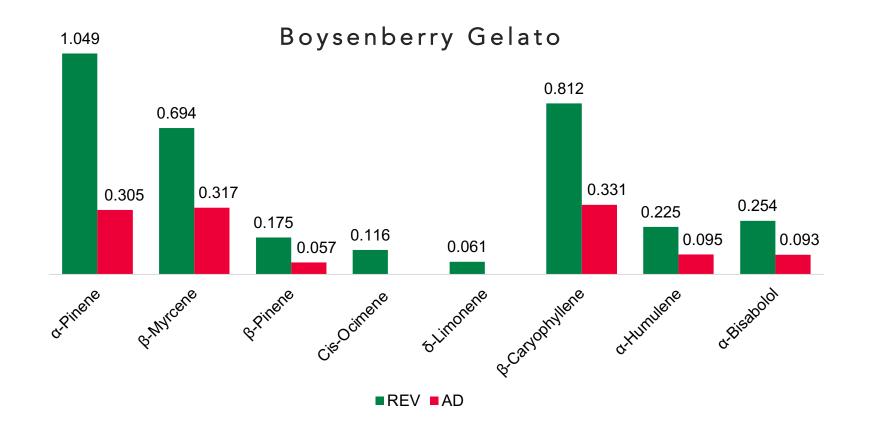

COST – PREVENT IRRADIATION Avoid irradiation logistics, time and cost.



Dry Potency Results

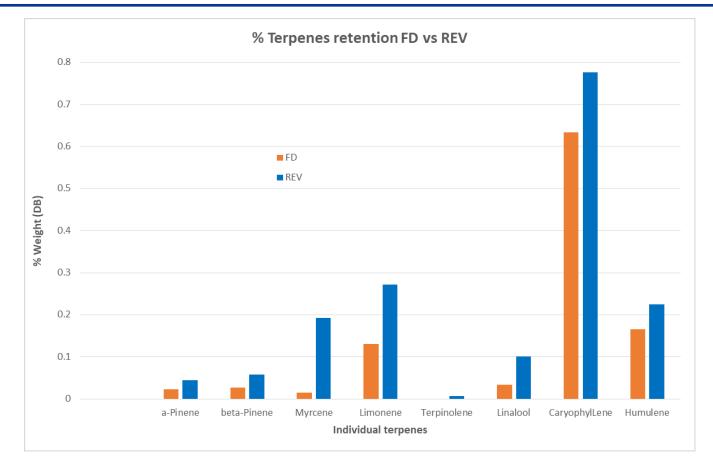
Cannabinoid

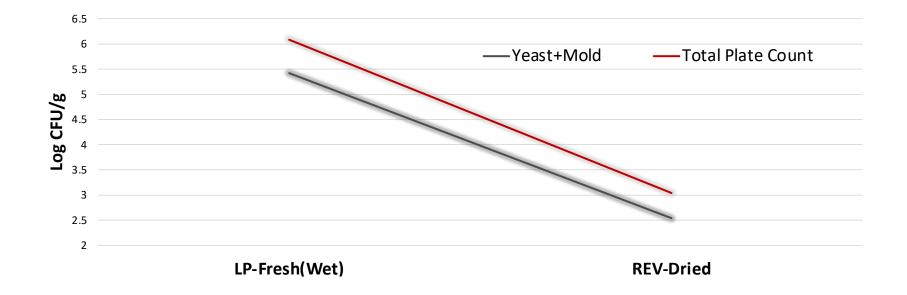
■HD ■REV



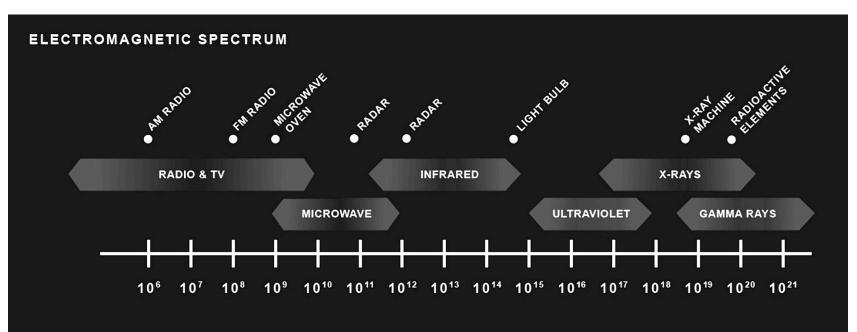
HD REV

Terpenes


Dry Terpene Results


Terpene Results FD vs REV

REV Bioburden Reduction



Microwave Safety

- Microwaves are non-ionizing radiation which is benign and does not damage flower integrity
- Microwaves are permissible in processing organic certified materials
- Cannabis irradiation is typically done with high energy X-ray or gamma rays

Thank you!

medicinal_cannabis_australia

Personal Contacts

<u>tobias@scitek.com.au</u>
0413 756 224