

# Container Closure Integrity Testing for the Pharmaceutical Industry

## About us



- Established in 1989, family owned
- Sound experience in chemistry & pharma
- 21 Team Members, growing quickly
  - Pharmaceutical Chemists (some with validation experience)
  - Analytical Chemists
  - Engineers
  - Equipment Specialists
- Covering Australia and New Zealand with offices in Sydney, Brisbane, Melbourne, Perth, NZ with Partner
- Services include equipment consulting, application and technology support, equipment sales, installation, training and after sales service including recalibration services

## What is it?



## **Container Closure Integrity Testing**

- (US FDA) obligation for "pharma" is that they must ensure "the container-closure system to maintain the integrity of its microbial barrier, and hence the sterility of a drug product throughout its shelf life"
- The key sources for ingress contamination are
  - humidity (H2O)
  - oxygen and
  - Microbiological
- Container integrity is also important to retain volatiles in your product
- Key guideline describing different test methods and selection process for sterile products is <USP 1207> published by the PDA

# Microbial Ingress?





- Based on Lee Kirsch studies (presented in PDA J 51.5, 1997 p 195-202) the critical leak size for microbiological ingress is 0.2 μm
- The risk of contamination increases with defect size
- With a defect of 0.7µm the risk of contamination is already >60%
- Above 5µm the risk of contamination is >80%
- Only 2 test current methods available can detect <0.2 μm</p>

# **Probabilistic Testing**



#### **Blue Dye Ingress Testing**

- the chance to detect a 10µm leak is only about 70%
- defects below 5µm are most likely not detected
- At 5µm our risk of contamination is >80%
- 0.2 µm is the ultimate target we aim for

#### The detection limit of Blue Dye Tests varies with:

#### Technical:

Leak size, type, length, material of construction, type of blockage, tracer concentration, surface tension, cleanliness, tracer compatibility with product or immersion fluid

#### Operational:

Ambient temperature, ambient pressure, sample positioning, inspection conditions, operator training/skill, sample preparation

#### **USP/PhEur Dye Ingress Test Samples**



10 µm

15 µm

5 µm

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., 63, 2009, p. 489 - 498

## USP 1207.2 (sterile products)



### Common "Technology Based" Test Methods

| Leak Test Method                                         | Measureme                                   | Detection range                               |                 |  |
|----------------------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------|--|
| Tracer-gas<br>(Helium Mass Spectrometry)                 | Helium flow                                 | (mbar.l/s)                                    | <0.1μm to 10μm  |  |
| Laser-Headspace<br>(Frequency modulated<br>spectroscopy) | [O <sub>2</sub> ] and/or [CO <sub>2</sub> ] | (%) Gas pressure                              | <0.1μm to >50μm |  |
| AMI* (Optical Emission Spectroscopy)                     | Leakage (N <sub>2</sub> , Ar, CC            | 0 <sub>2</sub> , H <sub>2</sub> 0) (mbar.l/s) | <0.5μm to >50μm |  |
| Mass Extraction (Micro/Mass flow sensors)                | Mass Flow                                   | (µg/min)                                      | >1.0μm to >50μm |  |
| HVLD<br>(Leakage current)                                | Electrical current                          | (μΑ)                                          | >1.0μm to >50μm |  |
| Pressure Decay                                           | Pressure drop                               | (mbar/s)                                      | >1.0μm to >50μm |  |
| Vacuum Decay                                             | Pressure rise                               | (mbar/s)                                      | >1.0μm to >50μm |  |

<sup>\*</sup>not yet recognized in USP 1207, but has been presented on PDA conferences – emerging technology

## 3 Leak Detection Solutions



## MICRO-FLOW AND MASS EXTRACTION

Air micro-flow sensor

## HELIUM MASS SPECTROMETRY

Magnetic deflection spectrometer

## OPTICAL EMISSION SPECTROMETRY

Multi-gas analyser (N2, CO2, Ar, H2O)







3 different technologies for CCIT solutions

- → because there is no one size fits all solution
- Non destructive test options
- Applicable for non-porous containers
- Global pass / fail test

## Helium Leak Detection



- High Sensitivity and Quantitative
  - Mass Spectrometer (magnetic deflection)
  - Down to 10<sup>-10</sup> mbar.l/s (sub-micron orifice)
- High Selectivity
  - Low natural background of 5 ppm (in air)
    - Sensitivity can be affected by background accumulation
  - High permeability, diffusivity & solubility
- Helium flows through cracks
  - Much smaller and faster than air



4 Electron collector

5 Filament #1 6 Filament #2

## **ASM 2000**



- Turn-key equipment dedicated for pharma
- Based on high performance helium leak detector
- All in one, including helium charging module
- PLC and HMI (3",5 touch screen)
- Customized test tooling according to the part to test
- Trolley includes all vacuum pumps
- Data storage / 3 access level / PDF test reports
- CFR 21 P 11 soon to be released
- MALL TEST = Maximum allowable Leak Limit
- Global Pass & Fail



# R&D Testing with ASM 2000



#### **Experimental Glass Bottle Cap Test - how to proceed?**

- → Helium injection inside the bottle must be controlled & performed during the test sequence
- → Leak testing must be performed before helium permeation appears (plastic)

#### **ASM 2000 Test sequence:**

- 1/. Start test on ASM 2000
- 2/. Bottle evacuation (remove air)
- 3/. Helium Charging (Patm)
- 4/. Helium test
- 5/. Helium evacuation
- 6/. N<sub>2</sub> venting/purge
- 7/. Stop test on HLD / Venting

Fully automated process, started with one button, settings can be customized

A 6mm diameter hole has been drilled in the bottom of the bottles



#### **In production = non destructive test approaches**

- Injection of He tracer gas prior to container closure
- "Bombing" Test apply pressurized He

## Non Destructive Helium Testing





- 1) Bombard with helium tracer gas whilst sealed
- 2) Global vacuum pass & fail (MALL) test

Container open / unsealed for filling





- 1) Inject helium tracer gas before sealing the package
- 2) Global vacuum pass& fail (MALL) test

## **Optical Emission Spectroscopy**





## **AMI 1000**



Detection limits / cycle times for different package types

| Samples          | Sensitivity<br>Orifice diameter <sup>3)</sup><br>Air/N <sub>2</sub> Leakage |            | Test duration                       | Advantages                                                                                                                                               |  |  |
|------------------|-----------------------------------------------------------------------------|------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | Air/N <sub>2</sub> leak                                                     | Water leak |                                     |                                                                                                                                                          |  |  |
| Blisters         | 0.4 μm<br>2 · 10 <sup>-5</sup> mbar l/s                                     | n.a.       | > 20-30 sec                         | Highest sensitivity test method available on the market Outgazing of the drug itself can be used for gross leak detection Applicable to peeling blisters |  |  |
| Syringes & Vials | 0.4 µm<br>2·10 <sup>-5</sup> mbar l/s                                       | 2          | > 15 sec                            | Air and water detected simultaneously Test per batch to increase the troughput                                                                           |  |  |
|                  | 0.2 μm<br>6·10 <sup>-6</sup> mbar l/s                                       | 2 μm       | ~45 sec.<br>(high sensitivity mode) | MALL level can be achieved in high sensitivity mode                                                                                                      |  |  |
| IV bags          | 0.4 μm<br>2 · 10 <sup>-5</sup> mbar l/s                                     | 3 µm       | > 20 sec                            | Air and water detected simultaneously                                                                                                                    |  |  |
| Plastic bottles  | 0.5 μm<br>4·10 <sup>-5</sup> mbar l/s                                       | n.a.       | > 20 sec                            | Test per batch (up to 50 or 100) to increase the troughput                                                                                               |  |  |

OES is unique amongst leak detection due to its ability to track various gases, moisture etc (N<sub>2</sub>, H<sub>2</sub>0, Ar, CO<sub>2</sub>)

Detection limits depends on tracked gas species

All can be tracked simultaneously

## Mass Extraction



Mass Conservation law:

Mass extracted =

mass leaked at steady state

- Measurement of mass flow rate from test chamber to a reference
- Flow equals defect (down to 1 um)
- Gas based typically air or nitrogen
- For vacuum testing water vapour flow is used



## **Example IV Bag Testing**





## **Example IV Bag Testing**





#### ASTM F3287 – 17 (Mass Extraction) Result Extract



- Glass vials and LDPE Bottles Mass Extraction tests detected 1µm and 2µm defects at all labs and samples at over 95% confidence level
- Glass syringes Mass Extraction tests detected 1µm air filled syringes and 2µm air and water filled syringes at all labs and samples. 2µm were detected at a confidence level equal or greater that 95%
- 1µm liquid filled syringe plugged – suspected by silicon lubricant

|                  | Package Description               | Sample<br>Qty. | Oty. of | Qty. of Failed<br>Tests | Oty. of Passed<br>Tests | Success % |
|------------------|-----------------------------------|----------------|---------|-------------------------|-------------------------|-----------|
| Glass Vial 2 ml  | Liquid Filled - Negative Control  | 10             | 120     | 0                       | 120                     | 100 %     |
|                  | Air Filled - Negative Control     | 10             | 120     | 0                       | 120                     | 100 %     |
|                  | 1 µm micropipette - Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 1 µm micropipette - Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 2 µm micropipette - Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 2 µm micropipette - Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
| 9                | 5 µm micropipette - Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |
| 15               | 5 µm micropipette – Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 10 µm micropipette - Air Filled   | 3              | 36      | 36                      | 0                       | 100 %     |
| LDPE Bottle 4 ml | Liquid Filled - Negative Control  | 10             | 120     | 0                       | 120                     | 100 %     |
|                  | Air Filled - Negative Control     | 10             | 120     | 0                       | 120                     | 100 %     |
|                  | 1 µm micropipette - Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 1 µm micropipette - Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 2 µm micropipette – Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 2 µm micropipette - Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 5 µm micropipette – Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 5 μm micropipette – Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
| -                | 10 µm micropipette – Air Filled   | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | Air Filled - Negative Control     | 10             | 120     | 0                       | 120                     | 100 %     |
| _                | 1 µm micropipette - Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
| Syringe 1 ml     | 2 µm micropipette – Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 5 µm micropipette – Air Filled    | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 10 µm micropipette – Air Filled   | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | Liquid Filled - Negative Control  | 10             | 120     | 0                       | 120                     | 100 %     |
| 8                | 1 µm micropipette - Liquid Filled | 3              | 36      | 0                       | 36                      | 0 %       |
| Ě                | 2 µm micropipette - Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |
|                  | 5 µm micropipette - Liquid Filled | 3              | 36      | 36                      | 0                       | 100 %     |

## Example IV Bags- Inline Testing







# **Example Vial Batch**







# Summary



Scitek offers highly reliable DETERMINISTIC test methods for different kinds of pharmaceutical packages and drug types (liquid or solid) – applicable for...



- We offer project support including design of customized tooling, IQ/OQ support as well as FAT / SAT support
- All our tools are factory calibrated based on traceable leak standards
- CFR 21 part 11 compliant software is available for He and Mass Extraction testing

# Whitepaper



Overview of existing CCIT Technologies (not all covered today)

|                                         | Helium Mess<br>Spectrometry                                                                                                                                                                             | O.E.S (Optical Emission<br>Spectroscopy)                                                                                                                      | Mass<br>Extraction                                                                                                                                                          | Vacuum<br>Decay | Vision<br>(Deflection)                                                                                                            | HSA<br>(Head Space Analysis)                                                                                                                                                                                 | HVLD<br>(High Voltage)                                                                                                                                      | Dye<br>Ingress                                                       | Microbial<br>Challenge                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|
| Deterministic                           | Yes                                                                                                                                                                                                     | Yes                                                                                                                                                           | Yes                                                                                                                                                                         | Yes             | Yes                                                                                                                               | Yes                                                                                                                                                                                                          | You                                                                                                                                                         | myrese                                                               | Channings                                          |
| Non-Destructive                         | (Yes)<br>only for open containers                                                                                                                                                                       | Yes                                                                                                                                                           | Yes                                                                                                                                                                         | Yes             | Yes                                                                                                                               | Yes                                                                                                                                                                                                          | Yes                                                                                                                                                         |                                                                      |                                                    |
| Quantitative                            | Yen                                                                                                                                                                                                     | Yes                                                                                                                                                           | Yes                                                                                                                                                                         | Yes             |                                                                                                                                   | You                                                                                                                                                                                                          |                                                                                                                                                             |                                                                      |                                                    |
| Sample preparation                      | He charging Plausability<br>test                                                                                                                                                                        | No sample preparation                                                                                                                                         |                                                                                                                                                                             |                 |                                                                                                                                   | Storage time No sample preparation                                                                                                                                                                           |                                                                                                                                                             | Immersion in dye or microbial media                                  |                                                    |
| Test pressure                           |                                                                                                                                                                                                         | Vacuum                                                                                                                                                        |                                                                                                                                                                             |                 |                                                                                                                                   | Atmospheric Pressure                                                                                                                                                                                         |                                                                                                                                                             | Shallow Vacuum                                                       | Atmospheric Pressure                               |
| Detection range<br>(Sharp edge orifice) | 0.01 < Q < 10 µm                                                                                                                                                                                        | > 0.2 µm                                                                                                                                                      | > 1 µm                                                                                                                                                                      | s 5 µm          | > 5 µm                                                                                                                            | > 0.01 µm                                                                                                                                                                                                    | 10-40 µm                                                                                                                                                    | ≤ 20 µm                                                              | > 0.2 jum                                          |
| Drug Product Limitations                | Sons  Lyophilz od (dry) or liquid drugs  Plugging risk for small defects for protein based drugs  Container must handle 1 bar differential pressure  Non-porous material  He Permettion  High outgazing |                                                                                                                                                               |                                                                                                                                                                             |                 |                                                                                                                                   | Lyophilized drugs                                                                                                                                                                                            | Conductive liquid drugs                                                                                                                                     | Light colored drugs                                                  | 4                                                  |
|                                         |                                                                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                                                             |                 |                                                                                                                                   | Rigid & Transparent Non-conductive<br>enaterial                                                                                                                                                              |                                                                                                                                                             | Non-po                                                               | ous material                                       |
| Container<br>Limitations                |                                                                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                                                             |                 | Container Design<br>(Semi-rigid or Bezibe)                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                             |                                                                      |                                                    |
| Method<br>Limitations                   | Require gas headspace or liquid imide the container                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                                             |                 |                                                                                                                                   | Require gas headspace                                                                                                                                                                                        | Test only at the point of                                                                                                                                   | Destructive                                                          | Long (few weeks) and                               |
|                                         | Difficult to seri-up Requires proper He gas management Hequires plausability test to valid the test result.  Not practical for mass production testing                                                  |                                                                                                                                                               |                                                                                                                                                                             | t the           | Seminivity depends on the product design:  # Headplace volume  # Size of the cavity  # Shape of the container                     | Requires waiting time<br>before actual testing<br>thours up to weeks!<br>Waiting time depends on<br>the gire headspace and<br>detection limit.<br>Headspace needs to<br>be either vacuum or<br>100% Nitrogen | electrode contact, with liq-<br>uid behind.  Limited usage for flexible<br>packaging a.  No real quantitative mea-<br>surement.  Risk due Ozone generation. | Probabilismo Poor sensitivity Operator & multi- parameters dependent | Expensive                                          |
|                                         |                                                                                                                                                                                                         | Detection limit as<br>depending on packaging<br>and drug type<br>Detection limit depends<br>on the gas used for the<br>detection                              | Free volume inside the test chamber can limit<br>sensitivity -> Test chamber must be optimized<br>for each format parts.  Sensitive to temperature and/or volume variations |                 | Requires positive control to calibrate the equipment                                                                              |                                                                                                                                                                                                              |                                                                                                                                                             |                                                                      |                                                    |
| Method<br>Advantages                    | High selectivity (He)<br>High sensitivity test<br>Possibility to localize the<br>leak position with sniffing.                                                                                           | Selectivity: can detect<br>simultaneously gas spe-<br>cies (Nr. Hr0, Ar. COr)<br>Can test multiple contain-<br>ers with high sensitivity at<br>the same time. | High sensitivity desection<br>of water leskage<br>Robust technology                                                                                                         | Simple          | Identification of the feeky<br>cavity or container.  Can test multiple contain-<br>ers with high sensitivity at<br>the same time. | High selectivity (0 <sub>0</sub> ) Very fast, high thorughput can be achieved                                                                                                                                | Viry fast, high thorughput<br>can be achelved                                                                                                               | Low cost equipment Easy to understand                                | Direct measurement of the biological contamination |
| Comments                                | Mainly used for the design<br>and qualification phase<br>of the packaging's,<br>not practical for mass<br>production testing.                                                                           | Highly verstalle and sensi-<br>tive test for different drug /<br>packaging systems                                                                            | Highly verstalle and sensi-<br>tive text for different drug /<br>packaging systems<br>in-line option available.                                                             |                 | Mainely used for blister packs.                                                                                                   | Indirect leak test, we measure the consequence of oxygen ingress through defects.                                                                                                                            | Very fast method for pro-<br>duction test, limited usage<br>for flexible packaging's.                                                                       | Widely-used for decades<br>industry & regulatory fam                 | Barity                                             |

# Thank you



#### **Scitek Contacts**

- scitek.com.au
- medicinalcannabisproduction.com.au
- **1800 023 467**
- sales@scitek.com.au

#### **Personal Contacts**

- tobias@scitek.com.au
- 9 0413 756 224