

Production Tools from Plant to Extract

Tobias Schappeler Managing Director

About us

- Established in 1989, family owned
- Extensive experience in relevant chemistry & pharma
- 21 Team Members, growing quickly
 - Chemists with pharma experience
 - Analytical Chemists
 - Engineers (Mechanical, Electronics, Mechatronics)
 - Cannabis Processing Specialists*
- Covering Australia and New Zealand with offices in Sydney, Brisbane and Melbourne
- Services include equipment consulting, application and technology support, equipment sales, installation, training and after sales & calibration service

*currently recruiting

Typical Production Workflow

Why?

- Recovery after primary extraction may be difficult or even near impossible (solvent dependent)
- Compromised yield if done during primary extraction
- Damage or loss in downstream processing
- Collect & re-introduce during formulation for
 - Entourage effect
 - Dose consistency
 - Consumer experience (more recreational)
- Sell as separate product (very desirable, good prices)
- Use in clinical trials to camouflage placebo

Primary Extraction Solvent Compatibility for Terpene Extraction

- ☺ Hydrocabon
- \odot CO₂ (but winterisation typically done with ethanol)
- 😔 Ethanol

CO₂

Solvent Free

🙂 Fast

- 🕑 Easy-to-use
- No detected impact on cannabinoids (scientific data)
- 😔 Extra production step
- Eimited capacity without good scale up path (currently)
- Water as solvent
- 🕑 Easy-to-use
- Extra production step
- Eimited good options for small scale production

- ⊙ Can be done on primary extraction tool
- ☺ No additional machine investment
- Terpene pull done sub critical, extra process step
- Limited separation efficiency
- Limited extraction yield

- Wet or frozen biomass
- Uses water content of biomass
- Directly after harvest, prior to drying
- GMP, CFR 21 P11

Simple Workflow

- 1) Load glass extraction container with flower
- 2) Place container into microwave and connect
- 3) Start run via PLC
- 4) Collect terpenes (with minor residual water)
- 5) Winterise

Use 2nd vessel for condenser wash runs Use 3rd product vessel to speed up turnaround times

Patented Microwave Extraction

- 1kg starting material
- Analysis via GC-MS
- Results in % of dry weight

- 0.1% Terpene post Ethos
- 1% variance between raw and post Ethos
- → Statistical testing errors

No cannabinoids detected in Ethos terpenes

Patented Microwave Extraction

Limited Batch Capacity – Suitable for Production?

Single Batch (no cleaning between runs) = 6t per year 3 kg per vessel 1h run time 8 runs per 8h, 24 kg per shift, 250 working days

Multi Batch = 4.5t per year 3 kg per vessel 1h run time, 20 min changeover (vessel change, solvent run) 6 runs per 8h, 18 kg per shift, 250 working days

- Ethos works well in < 10t per year range (running 2 machines seems reasonable)</p>
- Not suitable for large productions if all biomass terpene is targeted
- Terpene collection may not be required for every of your products, so microwave extraction may still make sense

Steam Extraction

- Winterisation will be needed for residual water removal
- Well established in essential oils and pharma botanical extraction
- High throughput and GMP options available

CO₂ Extraction

- Sub critical CO₂
- Typically 60-70 bar, 5-10 C
- Production steps
 1) Load biomass
 2) Terpene pull
 - 3) Cannabinoid Extraction
 - 4) Clean (CIP)

Saves double handling of biomass

 Discharge of terpenes mixed with (residual) biomass water content
 Post processing needed for terpene purification

Drying Methods

Freeze Drying

"Near ambient" temperature & low humidity

☺ Potentially positive effects, if buds are sold for smoking

scitek medical cannabis technology

- Hanging and collecting is labour intensive
- Slow takes 4 7 days
- Drying room expensive & large infrastructure

Elevated temperature with/without vacuum applied

- ☺ Scalable processing with batch separation
- ☺ Scalable investment in line with batch size
- ☺ Vacuum enables low product temperature drying
- ☺ Fast takes <1 day</p>
- Terpene loss if temperatures are too high

In frozen state under ultra-low vacuum

- ☺ Scalable processing with batch separation
- Scalable investment in line with batch size
- Ultra-low vacuum enables sublimation / lyophilisation
- Best possible plant integrity and volatile retention
- High investment for capacity

Drying Room

- : High capacity
- Reasonable terpene retention (low temp)
- Slow
- High operating cost (power, dehumidifier...)

Oven Drying

- \bigcirc Vacuum Drying Oven = heat > 60C
- ☺ In-process decarb possible
- ☺ Simple install and operation
- Terpene loss

Vacuum & Freeze Drying

100

200

300

0

Freeze water by applying vacuum, no cooling!

- Vacuum Drying or Distillation = above freezing point Liquid Phase -> Gas Phase
- Freeze Drying = below freezing point

400 t temperature in °C ----

- Solid (Frozen) Phase → Gas Phase
- Product Temperature = Function of Pressure

Product can remain cold / frozen even with heat (energy) applied

Freeze Drying = most gentle method with best volatile retention Freeze dried flowers, herbs, fruit, instant coffee...

Vacuum Drying

Vacuum Drying Oven = heat < 60C Cold Trap = - 60C to -105C (colder is better for terpene collection) typical recovery rate 60 – 80% Vacuum Pump = < 10 mbar operating pressure Condenser = < 5C (secondary terpene and water collection) typical recover rate >96% Process time < 12h

Freeze Drying

Milling

Cutting Mills

Industry standard

- ☺ Designed for cutting of fibrous (=plant) material
- ☺ Target particle size via in-built sieve
- \odot Active cooling possible with dry ice (or IN₂)
- \odot Rotors can be pre-cooled
- Relatively easy to clean
- Cyclone options for fast throughput, extraction, operator protection & to keep ambient clean
- ☺ GMP options available
- Labour intensive
- Mill can block (if used incorrectly)
- B May warm product (if used incorrectly)
- Dimited throughput for non-industrial size

Milling

Cutting Mills

- Hopper (Feed)
- Milling Chamber
- On / Off Speed Control
- Cyclone Separator
- Receptacle
- Vacuum Extractor

Particle Size Verification

Sieve Shakers

Industry standard

- Straightforward technology
- Improves extraction consistency
- ⊙ Good GMP tool
- 🕑 Inexpensive
- 🙁 Labour intensive for loading & cleaning
- Not practical for high throughput production

Particle Size Verification

Sieve Shakers

Particle too large = poor extraction times & yield

→ reprocess

Particle too small = block extractor filters or pass into extract
 discard or pelletise for extraction

Primary Extraction Solvents

Considered safe (but can kill!)

- General Sectrum extraction
- ☺ Poor extraction performance
 - Very Slow commonly >3h to 8h per batch 10+ times slower than ethanol
- Extract requires extensive clean up (winterisation) adding significant production cost and time causing terpene loss (if not collected prior)
- ☺ Fast extraction times under 1h possible
- ⊙ Extraction selectivity (via different hydrocarbons)
- ⊙ Approved (but must be purged)
- Solvent re-use challenging but cheap (<\$1 per liter)</p>
- 😥 High explosion risk
- Considered safe
- \odot Super fast extraction times under 30 min possible
- Best overall extraction yields
- Loss of terpenes
- Solvent re-use challenging but cheap (<\$2 per liter)
- 😟 Medium explosion risk

2.

Supercritical CO₂

Butane Propane Pentane

Extraction Technology

Supercritical CO₂

Hydrocarbon

Ethanol

- ☺ Process can be automated user skill independence
- ⊕ Equipment <u>can</u> be "GMP compliant"
- 😔 Equipment needs to be pressure vessel certified
- Extract requires clean up (winterisation)
- Bigh capital investment, significant maintenance cost
- Solution Consistent (by far)
- ↔ Limited scalability for high throughput production
- Manual and automated options available
- Generation Equipment <u>can</u> be "GMP compliant"
- Scalable with production throughput
- ☺ In column dewax
- High explosion risk
- Currently preferred for highest throughput
- Manual small scale, fully automated large scale
- Best extraction yields
- Subject State S
- ☺ Cold extraction may not require winterization
- ⊕ Equipment <u>can</u> be "GMP compliant"
- S Moderate explosion risk

CO₂ Extraction

Supercritical Critical Point:

31.10 °C (304.25 K) 73.9 bar (1,071 psi)

Sub Critical: Typical < 55 bar (800 psi) Typical 5-10 °C (approx. 280 K)

Impact of Pressure:

Higher pressure = faster extraction Higher pressure = more by-product (chlorophyll, fats, waxes, lipids...)

Lower pressure = cleaner extract Lower pressure = slower extraction

Key yield parameters = CO₂ pressure & flow rate Time

CO₂ Extraction

Ethanol Extraction

Low to Medium Throughput

Key System Components:

- Extractor
- Low Temperature Chiller for Solvent Tank
- (Optional) low temperature chiller for Dewax
- Vacuum pump
- Nitrogen supply

Simplified Workflow:

- 1) Evacuate
- 2) Purge with N2
- 3) Add & Cool Solvent in Holding Tank
- 4) Soak Material
- 5) Filtration in filtration cone
- 6) Optional dewax
- 7) Transfer crude to ethanol reclaim

Ethanol Extraction

High Throughput

Hydrocarbon Extraction

Low to Medium Throughput

Key System Components:

- Extractor
- Low Temperature Chiller for Solvent Tank
- (Optional) low temperature chiller for Dewax
- Vacuum pump
- Nitrogen supply
- Heater for Collection Tank (not shown)
- Compressor and Condenser Coil (not shown)
- Chiller for Condenser Coil (not shown)

Simplified Workflow:

- 1) Evacuate
- 2) Purge with N2
- 3) Add & Cool Solvent in Holding Tank
- 4) Soak Material in Extraction Column
- 5) Filtration in filtration cone
- 6) Dewax
- 7) Solvent reclaim (distillation) in Collection Tank Dewax Column
- 8) Solvent collection in Expansion Vessel and
 - external Condenser (not shown)

Hydrocarbon Extraction

High Throughput

from Plant to Extract

Production Tools

from Extract to API

Tobias Schappeler Managing Director

Typical Production Workflow

Terpene Extraction	Microwave, Steam, CO ₂
Drying	Hang Drying, Oven Drying, Vacuum Drying, Freeze Drying
Grinding / Milling optional Size Verification	Cutting Mills Sieve Shakers
Primary Extraction	CO ₂ , Hydrocarbon, Ethanol
Winterisation / Dewax	"Bucket&Freezer", Chemical (Filter) Reactors
Filtration	Filter Press, Nutsche Filter, Filter Reactor
Ethanol Evaporation	Rotary Evaporators, Distillation Plants
Decarboxylation	Chemical Reactors, Decarb Ovens
Concentration	Wiped Film Evaporators
Isolate Production	FCPC Chromatography, Chemical Reactors

Winterisation / Dewax

What is it? Cold Precipitation / Liquid Liquid Chromatography

Dewax Winterisation → use of extraction solvent (mostly hydrocarbons)
→ use of specific winterisation solvent (ethanol)

Simplified Ethanol Workflow:

- 1) Add ethanol into crude (10:1)
- 2) Stir (optional gentle heat to assist)
- 3) Cool to < -40C (industry standard)
- 4) Hold till separation happens
- 5) Syphon winterised oil
- 6) Filter as required

Most waxes start to solidify < +30C

Winterisation

"Bucket&Freezer"

- Cheap (\cdot)
- Slow
- \odot Manual
- \odot GMP?

Chemical Reactor

- 🙂 Established technology in pharma
- Typically 2x faster
- \bigcirc Accurate process control
- (\cdot) **GMP**
- \bigcirc Scalable
- Integrated Filtration saves time & labour \bigcirc
- (\cdot, \cdot) **High Investment Cost**

Chemical Reactors

- No insulation will ice up or get hot
- Limited process visibility if insulated
- Requires stronger heaters and chillers
- Limited temperature range

Tripple Wall

- Vacuum insulation protects staff
- Far superior performance
- Perfect process visibility
- Wider temperature range
- Save on thermoregulator cost

Filtration

Manual Small Batch / Lab Filtration shown (non GMP)

Filtration

Ethanol Reclaim

Rotary Evaporation

- ⊙ Industry Standard
- 🕑 GMP
- ⊕ Relatively fast up to 25l/h for 100l
 ■
- Automated process controls
- ⊙ 24/7 continuous evaporation solutions
- Extremely reliable (if top brand)
- Small footprint, easy on facility
- Low capital investment

Falling Film, Short Path

- ☺ Scalable for highest throughput
- 🙂 GMP
- ☺ Very fast commonly > 100 l/h
 - Less operators needed (compared to multi evaps)
- 😔 Generally requires explosion protection
- Significant investment (> 4 rotary evaporators)

Rotary Evaporation

Rotary Evaporation

Simplified Crude Oil Mix Workflow:

- 1) Start chiller and heating bath
- 2) Load winterised oil mix into evaporation flask
- 3) Start process program
- 4) Complete batch or add more product (manually or automatically)
- 5) Harvest cannabis oil
- 6) Drain waste receivers
- 7) Cleaning protocol
 - 1) Clean flask
 - 2) Cleaning solvent run (ethanol)
 - 3) Potential purified water run as required

scitek

medical cannabis technology

Rotary Evaporation

Capacity & Cost Considerations:

20I rotary evaporator = 14I per hour throughput 50I RE = 20I per hour 100I RE = 25I per hour

2 x 20l RE cost similar to 1 x 100l but gain production uptime protection Continuous feed options to save operator cost and enable 24/7 runs

Chiller spec (at coolant temperature!) must equal or better RE heater spec Chiller pump speed matters – faster is better

Only use corrosion resistant chemistry diaphragm vacuum pumps → ethanol attacks many elastomers (seals) used in other pumps

Consider amount of Ethanol processed for potential EX protection

Falling Film Evaporation

Heating & Cooling:

Small Production Scale = Thermoregulators

Industrial Scale = Steam and plant cooling water

Process Parameters similar to Rotary Evaporator

Decarb Technologies

- Question: When to best decarb in production?
- Decarb Oven (buds)

Vacuum Oven (buds)

- Straightforward Technology
- Inexpensive
- Labour intensive (loading&unloading, bagging)
- Slow
- Dry & Decarb in one combined process
 - ☺ Save space and money
 - 🙂 Dual use of equipment

Chemical Reactor (crude or distillate)

Decarb crude or distillate

- Typically 2-3x faster than oven based decarb
- ☺ Process much smaller volumes (post extraction)
- Far superior process temperature uniformity
- ☺ Save labour on bag / dish filling & transfers, cleaning...
- ☺ Established pharma technology, so easy to validate
- ☺ Connect directly to rotary evaporator or process flow
- 🙁 Investment

Decarb Technologies

Decarb & Vacuum Oven (buds)

Chemical Reactor (crude or distillate)

Simplified Workflow:

- 1) Fill flower into drying bags
- 2) Place bags into oven
- 3) Start drying process
- 4) Allow cool down (naturally)
- 5) Remove bags & empty
- 6) Clean

Simplified Workflow:

- 1) Fill reactor
- 2) Start process (2-3 times faster)
- 3) Force cool down (thermoregulator)
- 4) Drain oil
- 5) Clean

Distillation / Concentration

Thin Film vs Short Path Evaporation vs Molecular Distillation WARNING INDUSTRY CONFUSION!

Wiped Film Evaporation often called Thin Film GMP - yes Short Path Evaporation often confused with Wiped Film GMP - yes

Molecular Distillation often confused with Short Path GMP ??

Concentration

Wiped Film Evaporation vs Short Path Evaporation

Common:

- Internal wiper to increase product surface area
- Very short product dwell times protect product integrity
- High temperatures
- Low vacuum

Wiped Film External Condenser

- Lower price
- Less throughput

Short Path Internal Condenser

- Higher price
- Better throughput
- Better vacuum

Concentration

Wiped Film Evaporation vs Molecular Distillation

Common:

- High temperatures
- Low vacuum

Wiped Film & Short Path

- Far superior throughput
- Short dwell time protects product
- Automation available
- GMP

Molecular Distillation

- Slow
- Manual
- Extended product high temperature exposure (can cause product breakdown)

Concentration

Wiped Film Evaporator

- Best performing concentration tech for the job
 Standard technology in cannabis (and pharma)
 GMP
- Objective Scalable to highest throughput
- Protects cannabinoid integrity
- All product exposed surfaces require heating to avoid condensation / crystalisation
 Relatively high maintenance (to yacuum system)
- Relatively high maintenance (to vacuum system)
 If built without CIP, regular cleaning is labour intensive
- High investment (especially for GMP)

9

Note US Recreational Market Prices CBD Crude (Winterised) = US \$ 1,500 - \$ 2,000 per kg CBD Distillate = US \$ 4,000 - \$ 6,000 per kg

US \$750K for full GMP machine @ 2K extra income per kg = 375 kg (calculation simplified)

Isolate Production

- Crystalisation in Chemical Reactors
- ☺ Precipitation in chemical reactor
- ⊙ GMP
- Relatively cheap and simple process
- Bigh solvent consumption
- Crystals need to be purged to remove residual

Simplified Workflow:

- 1) Add distillate
- 2) Add solvent matrix (often proprietary)
- 3) Gently heat and stir till homogenious
- 4) Gently stir and cool
- 5) Stop stirring and hold cold temperature
- 6) Hold to await crystalisation
- 7) Filter crystals from solvent matrix
- 8) Purge crystals in vacuum ovens

Isolate Production

Chromatography (Column, Solid Phase)

- Well established and understood
- Scalable from lab to production
- Solid column packing material which is expensive to buy, replace, re-process and dispose
- Risk of poor separation results due to inconsistent column packing
- Cartridge changeover (if pre-packed columns are used)

Fast Centrifugal Partition Chromatography

- 3-5 times faster than column chromatography
- \bigcirc 10-20% typical lower solvent consumption
- (\cdot) Near zero product loss in the solid phase
- No denaturation risk for fragile molecules due to \odot
 - interaction with solid phase
- No solid column packing material, which is expensive (\cdot) to buy, replace, re-process and dispose
- Consistent separation results due to elimination of inconsistent column packing

FCPC Basics

- Preparative (meaning large volume) chromatography technique
- Bi-phase solvent system (2 non miscible phases)
- Separation and elution of compounds based on partition between the two liquid phases
- Stationary phase is maintained inside the column through centrifugal force
- Mobile phase travels through stationary phase
- Countless parameters to work with FCPC is extremely versatile

No1 Application – THC knockout from full spectrum

FCPC Basics

Simplified Workflow:

- 1) Prepare stationary phase matrix
- 2) Take winterised crude or distillate
- 3) Dissolve in mobile phase solvent matrix
- 4) Inject
- 5) Separate in centrifuge
- 6) Detect fractions
- 7) Divide fractions
- 8) Collect

Final Words

- When making equipment / tool decisions
 - Consider best tools for your specific product there are many options
 - Start from your final product and work backwards
 - Ensure key local (ANZ) standards are met (for example)
 - AS/NZ 3000 Wiring Rules
 - AS1210 Pressure Vessel
 - ASNZEx / IECEx Explosion Protection
 - Important pharma industry standards / regulatory requirements (e.g)
 - GMP
 - PIC/S
 - CFR 21 P 11/ PICS Annex 11
 - Protect your revenue through partnering with a <u>local</u> supplier who
 - Has experience with equipment import, installation and ongoing training
 - Assists with local certifications and registrations as required
 - Provides local engineering support
 - Consider lifetime cost, not only buy price
 - Consider downtime cost and service response times from overseas suppliers

Thank you!

Scitek Contacts

- https://medicinalcannabisproduction.com.au/
- 🥥 1800 023 467
- sales@scitek.com.au

medicinal_cannabis_australia

Personal Contacts

- <u>tobias@scitek.com.au</u>
- 🥥 0413 756 224