

A Member of The Linde Group

MEDICINAL CANNABIS SEMINAR GREENHOUSE & EXTRACTION CO₂

John Roynon

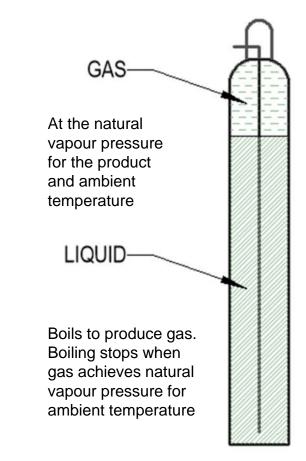
Technical Solutions Engineer BOC – Specialised Markets

- CO₂ Modes of Supply
- Greenhouse Applications
- Super Critical Extraction

Product Supply Modes

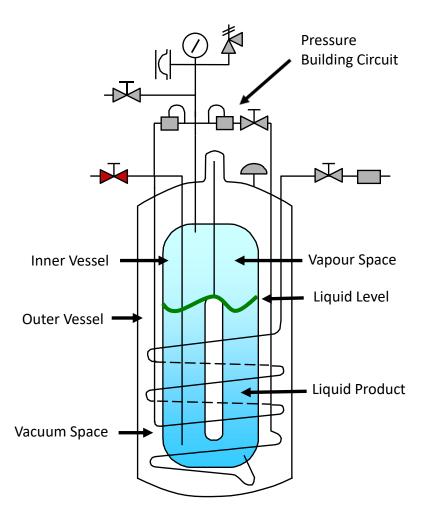
- Compressed Gas compressed into cylinders at high pressure (15000 - 30000 kPa)
- Liquefied Under Pressure Gases that become liquids under pressure at atmospheric temperatures (CO₂, LPG & Ammonia)
- Liquefied Cryogenic Gases that are held as liquid under pressure and extremely low temperature (< -100°C) (Liquid O₂, N₂, Ar, H₂ & He)

Liquid CO₂ can also be supplied in this format but is not at 'cryogenic' temperatures



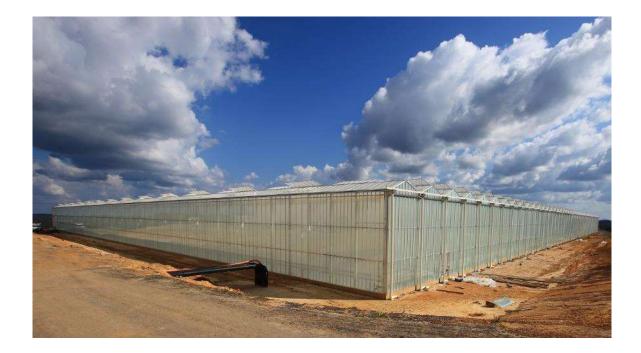
CO2 in Cylinders

- Conventional Compressed Gases
 - Withdrawn as gas from the top of the cylinder
 - Cylinder pressure reduces as product is consumed
- CO₂ Liquefied Under Pressure
 - Withdrawn as liquid from bottom of the cylinder via eductor tube
 - Cylinder pressure remains constant as product is consumed
 - Not possible to assess contents from the pressure gauge
 - Cylinder pressure varies with ambient temperature
 - CO₂ @ 25°C ~ 6400 kPa (915 psi)
 - CO₂ @ 0°C ~ 3500 kPa (508 psi)
- Cylinders have a black stripe and an 'E' suffix

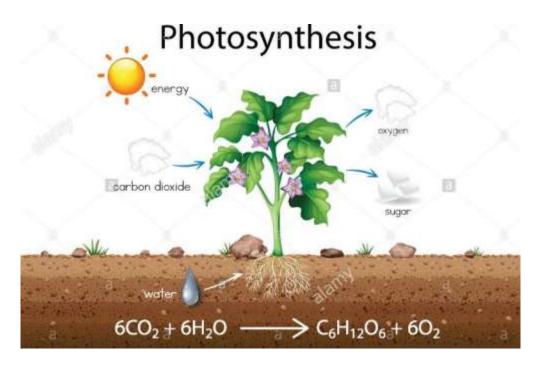


Bulk Liquid Gases

- Vacuum insulated tank (vessel within a vessel)
- Contains refrigerated liquid
- Not held at natural vapour pressure
- Relatively low operating pressures
- Typically 10 to 20 bar (145 to 290 psi)
- Regulated 'pressure building circuit' to maintain required pressure
- Fitted with relief valves and burst discs that may vent suddenly without warning and release product

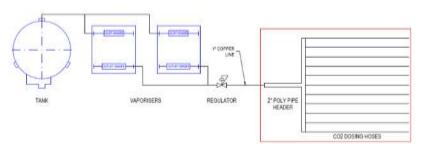


CO₂ FOR GREENHOUSES



CO₂ FOR GREENHOUSES

- Sealed greenhouses can result in depleted CO₂ levels
- Additional CO₂ is required to maintain normal levels
- Elevated CO₂ levels accelerate growth and improve yield
- Atmospheric CO₂ levels
 - 400 ppm
- Greenhouse CO₂ Levels
 - 800 to 1200 ppm
- Consumption will depend on design of greenhouse and CO₂ delivery system
 - Venting
 - Semi-closed
 - CO₂ recovery from boilers



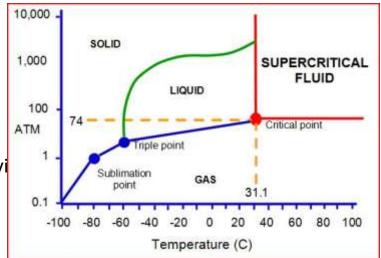
CO₂ FOR GREENHOUSES

- CO₂ consumption depends on a number of factors:
 - Size of greenhouse
 - Required concentration
 - Growing hours
- Typical consumption can be < 200 kg/hr/hectare when factoring in leakage and venting losses
- Maximum CO₂ uptake for a full grown plant is 7g/m²/hr assuming optimum conditions:
 - Saturating irradiance
 - Plant temperature
 - Leaf Area Index (LAI) of 3
- CO2 consumption will increase significantly when artificial lighting is used
 - Conventional crops rely on natural UV (< 9 hrs/day)
 - Cannabis usually artificial (< 18 hrs/day)

CO₂ FOR GREENHOUSES

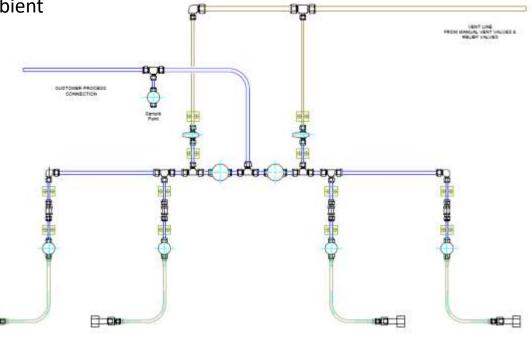
- Greenhouse CO₂ Supply Mode
- Bulk liquid tanks
- Vacuum insulated
- 15 to 20 bar operating pressure
- Liquid vaporised to gas in tank compound
- Gas regulated down to ~5 bar
- Large reticulation systems
- Temperature monitoring may be required to protect downstream reticulation materials from excessively cold CO₂
- Most greenhouse reticulation is plastic pipe and hose

SUPER CRITICAL CO₂ EXTRACTION



SUPERCRITICAL CO₂ EXTRACTION

- CO₂ supply pressures vary depending on manufacturer specifications
 - High Pressure 50 to 60 bar (typical liquid cylinder)
 - Medium Pressure 20 to 24 bar
 - Low Pressure < 10 bar
- At super-critical conditions CO₂ becomes a non-descript fluid that adopts both gas and liquid properties
- Penetrates plant material like a gas but behaves like a liquid solvent and 'carries away' the essential oils
- When system is depressurised, the CO₂ vaporises leavi no residues behind
- The preferred method in the cannabis industry



CO₂ SUPPLY – HIGH PRESSURE CYLINDERS

- 50 60 bar liquid supply
- Pressure dependent on ambient temperature
 - Suited to indoor locations where ambient temperature can be controlled
 - External systems more exposed
 - Long pipe runs also susceptible
 - Heat tracing may be required
- Limited volume:
 - 31 kg in a G size cylinder
 - Manifold systems
 - Multiple cylinder changes
 - Manual handling

CO₂ SUPPLY – MEDIUM PRESSURE

- 20 24 bar liquid supply
- Vacuum insulated storage tank
- Limited by design pressure of tank and relief valve set points
- Typical bulk liquid CO₂ tank
 - 22 bar Relief Valve
 - 19 Bar Max operating pressure
- BOC Cryospeed tanks
 - 37 bar Relief Valve
 - 30 Bar Max operating pressure
- Chart Perma-Max 1400 XHP with 50 bar max operating pressure
 - Not currently available in Australia

- Medium pressure applications may require a booster pump if being supplied by Cryospeed or bulk liquid tanks
- Significant capital investment (\$20K+) and ongoing running/maintenance costs

CO₂ SUPPLY – LOW PRESSURE (<10 Bar)

- Supplied by vacuum insulated storage tank
- Not limited by vessel design
- Not limited by relief valve set pressure
- In BOC experience this is not a common supply pressure to CO₂ extraction systems
- Most appear to be medium or high pressure systems requiring CO₂ at 20 < 60 bar

CO₂ SAFETY

- Gas monitors are required in all areas where gases are used in sufficient quantities to create a hazardous atmosphere
- Gas monitoring should include:
 - O2 (asphyxiation)
 - CO₂ (toxic in high concentrations)
- All gases displace Oxygen
- Oxygen displacement may be the most significant risk
- Position devices where gases will collect
- CO₂ is a dense heavy gas and will collect at low levels
- Repeater warning beacons & sirens should be installed at the all entrances to the area at risk
- Devices should be recalibrated regularly (6 monthly)
- Consider integration with Building Management System (BMS)

SUMMARY

- There are many different options...
- Each may have different CO2 requirements...
- Impacts equipment specifications, layouts, space requirements, infrastructure and delivery logistics...
- You need to understand the implications early in the plant design process
- We can advise and are happy to work closely with your other equipment suppliers to develop the optimum solution for your plant
- Errors can be difficult and expensive to address retrospectively...
- Get us involved as early as as possible!

Questions ???

More information is available at http://hiq.linde-gas.com

